Controllability properties of discrete-spectrum Schrödinger equations
نویسندگان
چکیده
We state an approximate controllability result for the bilinear Schrödinger equation in the case in which the uncontrolled Hamiltonian has discrete non-resonant spectrum. This result applies both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. In addition we get some controllability properties for the density matrix. Finally we show, by means of specific examples, how these results can be applied.
منابع مشابه
Controllability of the discrete - spectrum Schrödinger equation driven by an external field October 2 , 2008
We prove approximate controllability of the bilinear Schrödinger equation in the case in which the uncontrolled Hamiltonian has discrete nonresonant spectrum. The results that are obtained apply both to bounded or unbounded domains and to the case in which the control potential is bounded or unbounded. The method relies on finite-dimensional techniques applied to the Galerkin approximations and...
متن کاملGeneric controllability properties for the bilinear Schrödinger equation
In [16] we proposed a set of sufficient conditions for the approximate controllability of a discrete-spectrum bilinear Schrödinger equation. These conditions are expressed in terms of the controlled potential and of the eigenpairs of the uncontrolled Schrödinger operator. The aim of this paper is to show that these conditions are generic with respect to the uncontrolled and the controlled poten...
متن کاملExact controllability in projections of the bilinear Schrödinger equation∗
We consider the bilinear Schrödinger equation with discrete-spectrum drift. We show, for n ∈ N arbitrary, exact controllability in projections on the first n given eigenstates. The controllability result relies on a generic controllability hypothesis on some associated finite-dimensional approximations. The method is based on Lie-algebraic control techniques applied to the finite-dimensional ap...
متن کاملControl of the bilinear Schrödinger equation for fully coupling potentials
We present a general result of approximate controllability for the bilinear Schrödinger equation (with wave function varying in the unit sphere of an infinite dimensional Hilbert space), under the hypothesis that the Schrödinger operator has discrete spectrum and that the control potential couples all eigenstates. The control method is based on a tracking procedure for the Galerkin approximatio...
متن کاملControllability of the bilinear Schrödinger equation with several controls and application to a 3D molecule
We show the approximate rotational controllability of a polar linear molecule by means of three nonresonant linear polarized laser fields. The result is based on a general approximate controllability result for the bilinear Schrödinger equation, with wavefunction varying in the unit sphere of an infinite-dimensional Hilbert space and with several control potentials, under the assumption that th...
متن کامل